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Abstract
A random walk model with a negative binomially fluctuating number of steps
is considered in the case where the mean of the number fluctuations, N̄ , is
finite. The asymptotic behaviour of the resultant statistics in the large N̄ limit
is derived and shown to give the K distribution. The equivalence of this model
to the hitherto unrelated doubly stochastic representation of the K distribution
is also demonstrated. The convergence to the K distribution of the probability
density function generated by a random walk with a finite mean number of
steps is examined along with the moments, and the non-Gaussian statistics are
shown to be a direct result of discreteness and bunching effects.

PACS numbers: 46.65.+g, 02.50.−r

1. Introduction

The best known and most widely used statistical model for continuous variables is the Gaussian,
or normal, distribution. Its ubiquity derives largely from the central limit theorem (CLT), which
states that the sum of infinitely many identical independent random variables of finite mean
and variance is normally distributed. However, a real physical system will contain only a
finite number of such variables, and the CLT therefore represents an idealization of reality.
Further appeal of the Gaussian distribution lies in its simple analytical form and the relative
tractability of problems into which it is incorporated.

There has been a good deal of study into the convergence of random processes to the
normal, e.g. [1], and in many cases the Gaussian provides a good approximation to fluctuations
occurring in finite size systems. Nevertheless, there are many systems of interest, within the
physical sciences and beyond, whose statistics display non-Gaussian behaviour even in the
large system size limit, and this has prompted the development of numerous models for a
variety of non-Gaussian statistics.
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A particular class of non-Gaussian statistics that has found applications in several disparate
areas is the K distribution: a two-parameter class of distribution with probability density
function

P(x) = b2

2�(α)

(
b2x

4

) α−1
2

Kα−1(b
√

x), (1)

where �(z) is the gamma function and Kα−1(z) is the modified Bessel function [24] that gives
the distribution its name. The K distribution has mean

〈x〉 = 4α

b2
(2)

and normalized moments

x[r] = 〈xr〉
〈x〉r = r!�(r + α)

αr�(α)
. (3)

The shape parameter α describes the degree to which the K distribution is non-Gaussian, and
in the limit α → ∞ the K distribution reverts to an exponential distribution: this being the
distribution obtained for the modulus squared of a quantity described by a two-dimensional
Gaussian random walk.

A special case of the distribution was first observed in entomology in the 1950s, where
trichostrongylus retortaeformis larvae were found to be distributed spatially according to a K0

distribution arising as a result of a two-dimensional random walk with an exponentially
distributed stopping time [2]. This result was generalized in 1975 [3] to allow for
gamma-distributed stopping times whereupon the K distribution was obtained and used to
describe the distribution of the distance between the birthplaces of mates; so-called matrimonial
distances.

The above story is repeated in optics where the K0 distribution was used to describe doubly
scattered laser light [4] before the K distribution itself was seen to be a good description of the
intensity fluctuations in light passing through turbulent media [5, 6], and also those arising in
the non-Rayleigh echo of microwaves from rough sea surfaces [7, 8].

In addition to the applications mentioned above, the K distribution continues to be of
relevance in fields such as synthetic aperture radar [9], ultrasound [10], non-destructive
materials evaluation [11], acoustics [12] and satellite imaging [13].

There are two heuristic approaches to the generation of K statistics: the doubly stochastic
representation and the random walk model. In the first of these, the K distribution is obtained
by ‘smearing’ the mean of an exponential distribution according to a gamma distribution. The
latter approach involves allowing the number of steps in a two-dimensional random walk to
vary according to the discrete negative binomial distribution, with the K distribution resulting
in the limit of large mean step number fluctuations. Whilst it can be noted that the gamma
distribution appearing in the doubly stochastic representation is the high-density limit of the
negative binomial distribution used in the random walk model, there have been no attempts to
date to show the conditions for the equivalence of the two approaches.

Furthermore, just as the central limit theorem requires an infinite number of fluctuating
quantities in order to obtain exactly the Gaussian distribution, the random walk model requires
the mean of the fluctuating number of steps, N̄ , to be infinite in order to retrieve the K
distribution. This is clearly not physical and so the question arises: how large does N̄ need to
be in order that the statistics generated are a good fit to the K distribution?

The following section of this paper will give a brief summary of the doubly stochastic
representation for the K distribution. Section 3 will consider the random walk model for the K
distribution, demonstrating the emergence of Gaussian statistics for the fixed length random
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walk en-route. Section 4 will use a particular form for the individual step-size distribution
to demonstrate in closed form the equivalence of the random walk and doubly stochastic
approaches, before section 5 investigates the rate of convergence to the K distribution for a
random walk with a fluctuating number of steps with finite mean. Section 6 will summarize
the conclusions and identify ways in which this work can be continued forward.

2. Doubly stochastic representation

In general, a doubly stochastic distribution is the result of ‘smearing’ a parameter of one
distribution over another [14]. Many complex distributions may be expressed in this way, and
an extensive range of such distributions and their doubly stochastic representations are given
in [15]. Of interest to this work, however, is the particular example of the K distribution which
may be obtained by smearing the mean of an exponential distribution according to a gamma
variate with mean N̄ and shape parameter α:

PK(x) = α

N̄�(α)

∫ ∞

0

(
αw

N̄

)α−1

exp

{
− αw

N̄

}
1

w
exp

{
− x

w

}
dw

= 2α

N̄�(α)

(
αx

N̄

) α−1
2

Kα−1

(
2

√
αx

N̄

)
. (4)

The integration variable w appears as the mean of the exponential distribution, being the last
term in the integrand, and is integrated over the gamma distribution which comprises the
prefactor.

The above method of obtaining the K distribution is valid for all α > 0 and N̄ > 0. It is a
mathematical ansatz, and does not derive from a consideration of a particular physical model,
nor any more general physical reasoning. However, the exponential distribution appearing in
the integral is known to be a facet of Gaussian intensity fluctuations and this representation hints
that some composite of many Gaussian fluctuations may be responsible for the K distribution.

It is also worth noting that the above representation bears a close resemblance to
the ‘superstatistics’ used in the description of non-equilibrium statistical mechanics [16].
Furthermore, there is a deeper connection between the K distribution and non-extensive
statistics: the characteristic function of K distributed fluctuations has the same mathematical
structure (to within a normalizing constant) as the power-law distribution of the Tsallis entropy.
The consequences of this connection have been explored in the appendix of [17].

Although still heuristic, another method for obtaining K statistics—the random walk
model—offers some insight into their physical origin. It is this model that shall be considered
next.

3. Random walk model

The random walk model with fluctuating number of steps for the generation of K statistics was
borne out of the study of the statistical properties of electromagnetic radiation scattered from
systems containing a discrete number of scatterers. It is a heuristic model, rather than an exact
solution of Maxwell’s equations, and has provided considerable insight into the scattering from
systems of particles, the rough sea-surface scattering of microwaves and optical propagation
through turbulent media.

The electric field at the observation point is described as the superposition of contributions
from a (fluctuating) number of discrete scattering centres, and the number fluctuations may be
interpreted as the movement of these centres into and out of the area of illumination. Whilst
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this model is intuitively suitable for scattering by systems of discrete particles, it is perhaps less
obvious that it should also apply to scattering by continuous media, such as rough surfaces.
Nevertheless, there is a large body of experimental evidence that points to this being the case
[6, 18, 19] and the question becomes one of interpreting the physical nature of the discrete
scattering centres in these instances.

The coherent addition of fields from a finite number of scatterers, N, may be modelled via
the process

ξ(t) =
N∑

k=1

ak(t) exp{iφk(t)} = A(t) exp{i�(t)}, (5)

where {ak} and {φk} are random variables corresponding to the amplitude and phase from
each field contribution, respectively. This is equivalent to a two-dimensional random walk in
complex space with a finite number of steps, N. {ak} are assumed to be statistically similar
and independent from each other, i.e. 〈akal〉 = 〈a2〉δkl , where δkl is the Kronecker symbol and
the subscript is now dropped from a’s. {φk} are each taken to be uniformly distributed over
[0, 2π) and in optical terms, this corresponds to the so-called strong scattering assumption
in which the scatterers are assumed to be non-interacting and separated by distances much
greater than the wavelength of the incident radiation. Under this condition the characteristic
function, CN(u), is given by

CN(u) = CN(u) ≡ 〈e iξ ·u〉 = 〈J0(au)〉Na , (6)

where u = |u| and J0(z) is the Bessel function of the first kind. The uniform angular
fluctuations have been averaged over and the subscript a now indicates averaging over the step
size alone. Renormalizing this step size by a factor N1/2 and expanding the Bessel function
gives for large N

CN→∞(u) = lim
N→∞

(
1 − u2〈a2〉

4N
+ O(N−2)

)N

= exp

{
−u2〈a2〉

4

}
, (7)

where the averaging over a has been performed term by term on the expansion. The above
characteristic function may be inverted using the inverse Fourier transform [17]

PN(A) = A

∫ ∞

0
uJ0(uA)CN(u) du (8)

and gives rise to the Rayleigh distribution for the random walk amplitude

PN(A) = 2A

〈a2〉 exp

{
− A2

〈a2〉
}

. (9)

This corresponds to the amplitude fluctuations of the two-dimensional Gaussian distribution,
in accordance with the CLT. Gaussian statistics are therefore derived from the two-dimensional
random walk model where the (fixed) number of steps becomes large. In terms of the intensity
I = A2, an exponential distribution is obtained

PN(I) = 1

〈I 〉 exp

{
− I

〈I 〉
}

. (10)

The number of steps in the walk is now allowed to vary, and is drawn from the negative
binomial distribution

pN = (N + α − 1)!

N !(α − 1)!

(N̄/α)N

(1 + N̄/α)N+α
, α,N, N̄ > 0. (11)

This distribution arises in many diverse hierarchical and multi-scale systems [17–23] and is
characterized by its mean, N̄ , and the cluster parameter α. For small values of α, samples
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of the negative binomial distribution have a tendency to cluster together, and this clustering
becomes less pronounced as α increases in size, with Poisson statistics being retrieved in the
limit N̄ → ∞.

The characteristic function for a random walk with fluctuating number of steps may be
obtained by averaging over these number fluctuations

CN̄(u) =
∞∑

N=0

pNCN(u) (12)

and for the negative binomial distribution this yields

CN̄(u) =
[

1 +
N̄

α
(1 − 〈J0(au)〉a)

]−α

. (13)

This time the walk is scaled by the factor N̄1/2 and the mean number of steps is taken to
infinity. This scaling ensures that the second moment of the amplitude fluctuations is well
defined in the limit N̄ → ∞, where the characteristic function then takes the form

CN̄→∞(u) =
(

1 +
u2〈a2〉

4α

)−α

, (14)

which is clearly different from the previous form (7). The corresponding probability density
function is again achieved by the Fourier inversion of equation (8) and results in the amplitude
distribution

PN̄→∞(A) = 2γ

�(α)

(
γA

2

)α

Kα−1(γA), γ 2 = 4α

〈a2〉 , (15)

the corresponding intensity distribution is given by

PN̄→∞(I ) = γ 2

2�(α)

(
γ 2I

4

) α−1
2

Kα−1(γ
√

I ), (16)

which is in precisely the form of the K distribution given in equation (1) with b = γ .
The above random walk derivation of the K distribution is obtained from taking an

ensemble average over the number of steps in the walk. If the number of steps is deterministic
or fluctuates with a distribution whose variance is less than or equal to that of a Poisson
distribution, then the resultant is Gaussian in the limit as the average number of steps becomes
infinite. If the distribution has standard deviation greater than its mean, as is the case for the
negative binomial distribution used above, then the limit distribution for the resultant in the
same limit is non-Gaussian. Distributions with standard deviation in excess of the mean are
super-Poissonian and describe clustering. These clusters introduce an effective correlation
that leads to the violation of the central limit theorem.

4. Equivalence of random walk and doubly stochastic approaches

The limiting form of the random walk model given above assumes that higher moments
of the step-size distribution scale with the mean number of steps in such a way that that all
terms in the expansion of the characteristic function (13) vanish in the limit N̄ → ∞, with
the exception of the term containing 〈a2〉. This circumvents the problem of exactly how the
higher moments scale with the mean number of steps, and requires only that they vanish in
the limit.

If we wish to consider the rate at which a random walk with a finite mean number of
steps converges upon the limiting result given previously, it is necessary to know more than

5



J. Phys. A: Math. Theor. 42 (2009) 225007 O E French

their behaviour in the N̄ → ∞ limit: the precise nature of the scaling of higher moments is
required explicitly, and this will vary from one step-size distribution to another.

By taking a particular form of the step-size distribution, p(a), the scaling behaviour of all
the moments is defined and expressions for convergence of the distribution and the moments
may be obtained in closed form. Here, the step size is taken to be distributed according to the
Rayleigh distribution

p(a) = 2a

〈a2〉 exp

{
− a2

〈a2〉
}

, (17)

which has moments

〈ar〉 = r

2
�

( r

2

)
〈a2〉r/2. (18)

The averaging of the Bessel function required in equation (13) may be performed directly to
give

〈J0(au)〉a = exp

{
−u2〈a2〉

4

}
. (19)

The algebraic form of equation (13), with the help of the identity that defines the gamma
function [24]

�(z) = kz

∫ ∞

0
t z−1 e−kt , (20)

enables the characteristic function to be written in the following form:

CN̄(u) = 1

�(α)

∫ ∞

0
tα−1 exp

{
−

(
1 +

N̄

α

)
t

}
exp

{
N̄ t

α
exp

{
−u2〈a2〉

4

}}
dt. (21)

The corresponding probability distribution is obtained by using equation (8)

PN̄(A) = A

∫ ∞

0
uJ0(Au)CN̄ (u) du. (22)

The walk is again scaled by the square root of the mean number of steps through making the
transformation

u →
(

1

N̄

)1/2

u, A → N̄1/2A, (23)

which has the effect of normalizing 〈A2〉 = 〈a2〉, and the probability distribution is then given
by, after exchanging the order of integration,

PN̄(A) = A

�(α)

∫ ∞

0
tα−1 exp

{
−

(
1 +

N̄

α

)
t

} ∫ ∞

0
uJ0(Au) exp

{
N̄ t

α
exp

{
−u2〈a2〉

4N̄

}}
du dt.

(24)

Now making the substitution w = N̄ t/α and expressing the ‘exponential of an exponential’
term as an infinite series yields

PN̄(A) = αA

N̄�(α)

∫ ∞

0

(αw

N̄

)α−1
exp

{
−

(
1 +

α

N̄

)
w

}

×
∞∑

k=0

wk

k!

∫ ∞

0
uJ0(Au) exp

{
−ku2〈a2〉

4N̄

}
du dw

= 2αδ(A)

N̄�(α)

∫ ∞

0

(αw

N̄

)α−1
exp

{
−

(
1 +

α

N̄

)
w

}
dw

+
αA

N̄�(α)

∫ ∞

0

(αw

N̄

)α−1
exp

{
−

(
1 +

α

N̄

)
w

} ∞∑
k=1

wk

k!

2N̄

k〈a2〉 exp

{
− N̄A2

k〈a2〉
}

dw,

(25)
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where we have used the relations∫ ∞

0
uJ0(Au) exp

{
−ku2〈a2〉

4N̄

}
du = 2N̄

k〈a2〉 exp

{
− N̄A2

k〈a2〉
}

, k � 1

∫ ∞

0
uJ0(Au) du = 2δ(A)

A
,

and δ(x) is the Dirac delta function. Transforming into I = A2 and again using equation (20),
it is found that

PN̄(I ) = 2δ(I )

(
1 +

N̄

α

)−α

+
α

〈a2〉�(α)

∫ ∞

0

(αw

N̄

)α−1
exp

{
−αw

N̄

}

×
∞∑

k=1

wk

kk!
exp

{
− N̄I

k〈a2〉 − w

}
dw. (26)

The first term comprises the product of a delta function with p0, the probability that there are
no steps in the random walk. This therefore corresponds to the probability of zero intensity
arising as a result of no steps being taken. The relative magnitude of this term decreases with
increasing N̄ , vanishing from the random walk in the limit N̄ → ∞. It should be noted that
there is another contribution to the probability of zero intensity: that from the second term
in the equation, which is the probability that zero intensity arises from walks with nonzero
numbers of steps, i.e. that the walk returns to the origin.

It is now convenient to write the summation term in equation (26) as
∞∑

k=1

wk

kk!
exp

{
− N̄I

k〈a2〉 − w

}
= −〈a2〉

N̄

d

dI

∞∑
k=1

wk

k!
exp

{
− N̄I

k〈a2〉 − w

}

≡ − 〈a2〉
N̄

df∞(I, w)

dI
, (27)

where

f∞(I, w) ≡ lim
N̄→∞

∞∑
k=1

wk

k!
exp

{
− N̄I

k〈a2〉 − w

}
.

Replacing the summation with an integral over k, noting that k! = �(k + 1) and then making
the substitution x = k/N̄ yields

f∞(I, w) ≈ lim
N̄→∞

∫ ∞

1/N̄

N̄wN̄x

�(N̄x + 1)
exp

{
− I

〈a2〉x − w

}
dx

= lim
N̄→∞

∫ ∞

1/N̄

N̄wN̄x

√
2π e−N̄x(N̄x)N̄x+1/2

exp

{
− I

〈a2〉x − w

}
dx

= lim
N̄→∞

∫ ∞

1/N̄

(
N̄

2πx

) 1
2

exp

{
N̄x

(
1 − ln

N̄x

w

)
− w

}
exp

{
− I

〈a2〉x
}

dx,

where Stirling’s approximation [24] has been used for the asymptotic behaviour of the gamma
function with large argument. For large N̄ , the integrand will be dominated by the region
around its single turning point, which occurs at x = w/N̄ and is a maximum. Expanding the
argument of the exponential around this point to second order gives

f∞(I, w) = lim
N̄→∞

∫ ∞

1/N̄

(
N̄

2πx

) 1
2

exp

{
− N̄2

2w

(
x − w

N̄

)2
}

exp

{
− I

〈a2〉x
}

dx.
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Making a final substitution of y = (N̄/w)1/2x and rearranging yields

f∞(I, w) = lim
N̄→∞

∫ ∞

1/N̄

(
N̄

2π

) 1
2

exp

{
− N̄

2

(
y −

√
w

N̄

)2
}

×
(√

w/N̄

y

) 1
2

exp

{
− I

〈a2〉y
√

w/N̄

}
dy

=
∫ ∞

0
δ

(
y −

√
w

N̄

)(√
w/N̄

y

) 1
2

exp

{
− I

〈a2〉y
√

w/N̄

}
dy

= exp

{
− N̄I

w〈a2〉
}

(28)

since

lim
N̄→∞

(
N̄

2π

) 1
2

exp

{
N̄

2

(
y −

√
w

N̄

)2
}

= δ

(
y −

√
w

N̄

)
(29)

is simply the Gaussian definition of the Dirac delta function. Therefore

lim
N̄→∞

∞∑
k=1

wk

kk!
exp

{
− N̄I

k〈a2〉
}

= −〈a2〉
N̄

df∞(I, w)

dI
= 1

w
exp

{
− N̄I

w〈a2〉
}

, (30)

and reinserting this into equation (26) yields

lim
N̄→∞

PN̄(I ) = α

N̄�(α)

∫ ∞

0

(αw

N̄

)α−1
exp

{
−αw

N̄

} N̄

w〈a2〉 exp

{
− N̄I

w〈a2〉
}

dw, (31)

since the δ-function term vanishes in the limit. Taking the doubly stochastic representation,
given in equation (4), with x = I and then applying the scaling I → N̄I/〈a2〉 results in the
following:

PK(I) = α

N̄�(α)

∫ ∞

0

(αw

N̄

)α−1
exp

{
−αw

N̄

} N̄

w〈a2〉 exp

{
− N̄I

w〈a2〉
}

dw, (32)

which is precisely that obtained from the limit of the random walk model.
It has therefore been demonstrated that the doubly stochastic representation of the K

distribution emerges naturally from the random walk model. As alluded to earlier, this results
from the continuum limit of the negative binomial distribution being the gamma distribution,
which manifests itself mathematically through the gamma transformation of equation (20).

5. Convergence of moments

The above equivalence occurs only in the strict limit N̄ → ∞ but such a limit is not the one
that corresponds to a real physical system, where the mean of the number fluctuations will
necessarily be finite. Nevertheless, the intensity fluctuations of a finite system are found to
be a good approximation to the K distribution in a number of systems [5–7], and it would be
useful to know over what range this approximation is valid.

This is investigated through a consideration of the normalized intensity moments

I [r] = 〈I r〉
〈I 〉r (33)
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for the random walk with finite N̄ . It is possible to rewrite equation (26) as

PN̄(I ) = α

N̄�(α)

∫ ∞

0

(αw

N̄

)α−1
exp

{
−

(
1 +

α

N̄

)
w

} ∞∑
k=1

wk

k!

N̄

k〈a2〉 exp

{
− N̄I

k〈a2〉
}

dw, (34)

where the delta function term has been omitted since it does not contribute to the moments.
The I dependence is now in the form of an exponential distribution and averaging over the
intensity then yields

〈I r〉 = α

N̄�(α)

∫ ∞

0

(αw

N̄

)α−1
exp

{
−

(
1 +

α

N̄

)
w

} ∞∑
k=1

wkr!

k!

(
k〈a2〉
N̄

)n

dw

= r!

�(α)

( 〈a2〉
N̄

)r (
1 +

N̄

α

)−α ∞∑
k=1

kr�(k + α)

k!

(
1 +

α

N̄

)−k

, (35)

where equation (20) has been used to perform the integration over w. The summation may be
performed by noting that it is always possible to write

kn =
n∑

j=1

cj k!

(k − j)!
, (36)

where cj are constants that may easily be deduced for a given n. The normalized moments
are then given by, recalling that for the rescaled walk 〈I 〉 = 〈a2〉,

I
[r] = r!

�(α)N̄r

(
1 +

N̄

α

)−α r∑
j=1

cjSj , (37)

where

Sj =
∞∑

k=1

�(k + α)

(k − j)!

(
1 +

α

N̄

)−k

= �(α + j)

(
1 +

N̄

α

)α (
N̄

α

)j

. (38)

The above may be used to calculate the following:

I
[1] = 1, (39)

I
[2] = 2

[(
1 +

1

α

)
+

1

N̄

]
, (40)

I
[3] = 6

[(
1 +

1

α

) (
1 +

2

α

)
+

3

N̄

(
1 +

1

α

)
+

1

N̄2

]
, (41)

I
[4] = 24

[(
1 +

1

α

) (
1 +

2

α

) (
1 +

3

α

)
+

6

N̄

(
1 +

1

α

)(
1 +

2

α

)
+

7

N̄2

(
1 +

1

α

)
+

1

N̄3

]
, (42)

which are all of the form

I
[r] = I

[r]
K + O(N̄−1), (43)

where I
[r]
K is the corresponding moment of the K distribution given by

I
[r]
K = r!�(r + α)

αr�(α)
= r!

r−1∏
j=0

(
1 +

j

α

)
. (44)
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Figure 1. The third moment of the FMRW plotted against the second on a log-linear scale for
α = 1/2. The dashed line is calculated for N̄ = 1 whilst the dotted line is for N̄ = 5. The solid
line is the corresponding curve for the K distribution.
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Figure 2. The plot of the ratio I [r]/I
[r]
K against N̄ for α = 1/2. The first, second, third and fourth

moments are given by the solid, dashed, dotted and dot-dashed lines, respectively (from bottom to
top).

Figure 1 shows the plot of the third moment against the second moment of the finite mean
random walk (FMRW) on a log-linear scale. It can be seen that for N̄ = 5 the curve is
practically indistinguishable from that of the K distribution, and that even for N̄ = 1 there
is reasonable agreement. The starting point of the plot in each case is determined by the
minimum value of I [2] that may be achieved for a given N̄ , which may be deduced from
equation (40). This clearly shows the rapid convergence with N̄ of the FMRW to K statistics.

Figure 2 plots the ratio I [r]
/
I

[r]
K against N̄ , for α = 0.5 and r from 1 to 4. The mean

of the FMRW is the same as for the K distribution for all N̄ , but the higher moments of the
FMRW are always greater than the corresponding K distribution moments, indicated by the
ratio always exceeding unity. There is again rapid convergence to the K distribution moments
with increasing N̄ in both cases, with the higher moments being slower to converge than the
lower ones.
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Figure 3. Plot of the probability density function, PN̄ (I ), against intensity, I, for α = 1/2. The left
hand figure is plotted on linear axes for small values of I, whilst the right is plotted on a log-linear
scale for larger values of I. In each case, the solid line is the K distribution (N̄ → ∞) and the
dashed, dotted and dot-dashed lines are the FMRW model with N̄ = 10, 6 and 2 respectively.

This behaviour can be understood by considering the effect of finite N̄ on the form of
the probability density function given in equation (26). As already mentioned, the δ-function
term corresponds to an additional weight at I = 0 as a result of there being no steps in the
walk, and this is non-vanishing for finite N̄ . This weight does not contribute directly to the
moments, but merely serves to satisfy the conservation of probability. However, the fact that
a finite proportion of the probability is embodied in this δ-function term will cause a decrease
in the moments as a result of the associated redistribution of the probability density.

This effect is opposed for nonzero values of the intensity by a shifting of the distribution
weight away from the ‘front end’ and into the ‘tail’. This can be seen from figure 3, which
is a plot of the probability density function, PN̄(I ), against the intensity, I, for α = 0.5 and
varying values of N̄ . Also shown is the K distribution for the same value of α. The infinite
series in equation (26) has been truncated at the value k = kmax, which causes a small error
in the tail, but for a given I this error can be made vanishingly small by taking kmax to be
sufficiently large and does not affect the conclusions drawn here. It can be seen that the value
of the probability density function for the FMRW is less than that of the K distribution for
smaller values of I, but is greater for larger values.

In the limit α → ∞, the number fluctuations are Poisson in nature and yet the normalized
second moment, equation (40), still differs from the Gaussian value of 2 for finite N̄ . Since in
this limit the bunching properties of the negative binomial are no longer at work, it can only be
the discreteness of the number fluctuations that are giving rise to this deviation. In this limit,
and for large yet finite N̄ , it is possible to write

I
[2] = 2

(
1 +

1

N̄

)
, (45)

I
[3] = 6

(
1 +

1

N̄

) (
1 +

2

N̄

)
+ O(N̄−2), (46)

I
[4] = 24

(
1 +

1

N̄

)(
1 +

2

N̄

) (
1 +

3

N̄

)
+ O(N̄−2), (47)

and the moments take a similar form to the K distribution moments given in equation (44) with
N̄ replacing α. This suggests that the effect upon the fluctuations of finite N̄ in the α → ∞
limit is similar to that of the bunching of the negative binomial distribution. This is intuitive
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in the sense that for finite N̄ the number fluctuations, even for α → ∞, are bunched around
certain values: the integer values of N. It would appear therefore that it is the bunching effect
that gives rise to the non-Gaussian statistics observed in many systems.

6. Conclusions and further work

In this paper, it has been demonstrated that two heuristic models for the generation of K statistics
that are only superficially related at first glance are in fact equivalent. This equivalence derives
from the emergence of the gamma distribution in the high-density limit of the negative binomial
distribution, the latter describing the number fluctuations in the random walk model.

When the mean of the number fluctuations in the random walk model is finite, the
moments display a rapid convergence to K statistics with increasing N̄ , although this rate of
convergence is slower for higher moments. The effect of finite N̄ is to introduce discreteness
into the variation in step size, and this has an analogous effect to the bunching inherent in
negative binomial statistics.

Although the results obtained here were obtained for a particular form of the step-size
distribution, there will be no qualitative difference were another form to be used. The effect
of the step-size distribution is manifested in the coefficients of the inverse powers of N̄ in
equations (40)–(42), which in the most general case contain expressions of the form 〈a2j 〉/〈a2〉j
[25]. For the Rayleigh distribution, these factors reduce simply to j ! but other distributions
will give slight modifications to this. For example, if the step-size distribution was itself taken
to be K distributed, then

〈a2j 〉
〈a2〉j = j !�(α + j)

αj�(α)
, (48)

resulting in different numerical factors, but no essentially new results.
Furthermore, by taking the step-size distribution to Rayleigh, it has been possible to

better distil the effect of discreteness upon the generation of non-Gaussian statistics. The
Rayleigh distribution is that which arises in two-dimensional random walks and results in
Gaussian statistics. It does therefore not, in itself, contribute to the onset of the non-Gaussian
fluctuations observed in the FMRW model. These are instead due to a combination of the
bunching and intrinsic discreteness of the negative binomial distribution.

It would be interesting to investigate in a similar vein the convergence of random walks
which display a directional bias, deriving from a non-uniform angular distribution of φi’s, or
which do not satisfy the assumption that ai’s and φi’s are independent. Both of these situations
arise in scattering problems where the strong scattering assumption is invalid [19], and have
been shown in the limit to give the generalized K distribution [26].

Fluctuations that display power-law behaviour on both an inner and an outer scale have
been shown to arise in the large mean fluctuation number limit of random walks where the
step size is drawn from a power-law distribution and the number of steps fluctuates according
to a negative binomial distribution [17]. It would be interesting also to investigate the effect
of finite mean step size upon a random walk whose step-size distribution exhibits power-law
behaviour over a finite range only. This would impose a third scale which, depending on the
size of N̄ , would either suppress the outer scale induced by the power-law fluctuations or have
the effect of limiting the outer power-law behaviour to a finite region, rather than over the
infinite region seen in [17].

Furthermore, whilst the number fluctuations considered here are negative binomial in
nature, there are other distributions that will give a nonzero variance in the high-density limit
and give rise to non-Gaussian statistics other than the K distribution. Indeed, some work
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has already been performed on random walks in the large mean limit for which the number
fluctuations are governed by a power law, and singular behaviour was observed in the resulting
distribution. The effect of finite mean upon such a system might well yield interesting results
and modify this singular behaviour. Such power-law number fluctuations have been used in the
resolution of a paradox in the consideration of sandpiles: the apparent infinite displacement,
or flight, of grains within the pile was revealed to be instead due to a power-law distributed
number of subflights, each of finite length. Large though the systems described by sandpile
dynamics are, it would be informative to consider the effects of finite mean upon the resulting
distribution.

Through the investigation of these further examples, it will be possible to gain additional
insight into the role played by the intrinsic discreteness of finite systems in generating non-
Gaussian fluctuations.
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